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Abstract. A detailed numerical analysis of exciton-exciton interactions in semiconductor quantum wells
is presented. The theory is based on the dynamics-controlled truncation formalism and evaluated for the
case of resonant excitation of 1s-heavy-hole excitons. It is formulated in terms of standard concepts of
scattering theory, such as the forward-scattering amplitude (or T -matrix). The numerical diagonalization
of the exciton-exciton interaction matrix in the 1s-approximation yields the excitonic T -matrix. We discuss
the role of the direct and exchange interaction in the effective two-exciton Hamiltonian, which determines
the T -matrix, evaluated within the 1s-subspace, and also analyze the effects of the excitonic wave function
overlap matrix. Inclusion of the latter is shown to effectively prevent the 1s-approximation from making
the Hamiltonian non-hermitian, but a critical discussion shows that other artefacts may be avoided by not
including the overlap matrix. We also present a detailed analysis of the correspondence between the exci-
tonic T -matrix in the 1s-approximation and the well-known T -matrix governing two-particle interactions
in two dimensional systems via short-range potentials.

PACS. 78.67.De Quantum wells – 03.65.Nk Scattering theory – 71.35.Gg Exciton-mediated interactions

1 Introduction

Nonlinear semiconductor optics offers the unique possi-
bility to study many-body processes and particle cor-
relations in almost arbitrary geometries and spatial
dimensions. Probably the best-studied case is that of
quasi-two-dimensional systems, which is realized in the
form of semiconductor quantum wells. The theoretical
analysis of many-body effects in semiconductor quan-
tum wells can roughly be divided into two limiting cases,
that of high electron-hole excitation on the one hand
and, on the other hand, that of low excitation, specifi-
cally in the lowest-order nonlinear optical regime (χ(3)-
regime). Coherent optical experiments and correspond-
ing theoretical investigations have clearly shown that the
third-order nonlinear regime yields important informa-
tion about quantum correlations, exciton-scattering and
the formation of coherent biexcitons (see, for example,
[1–26]; further references can be found in [27]). Many of
the theoretical χ(3)-studies are based on the dynamics-
controlled truncation (DCT) scheme [28]. It has proven to
be a powerful approach to two-exciton correlations (see,
for example, [8,10,19,26,29,30]). However, owing to the
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complicated dependence of the measured signals on the ex-
citon scattering amplitude, the question how these many-
body effects are related to standard concepts in scattering
theory (see, e.g., [31]) is usually not addressed. Clearly,
the identification of theoretical concepts in coherent exci-
ton correlations with old and well-established concepts in
standard scattering theory would deepen our understand-
ing of excitonic optical nonlinearities. It can also make
contributions to standard scattering theory since exciton-
scattering can be realized experimentally in otherwise not
easily accessible geometries (here: quasi-two-dimensional
systems).

An important concept in standard scattering theory
is that of the T -matrix or scattering amplitude, which
also plays a prominent role in conventional equilibrium
and nonequilibrium many-body theory. Specifically, the
‘off-energy-shell’ (for a definition, see Sect. 2 below) for-
ward scattering amplitude between two constituent par-
ticles governs the statistical mechanical properties of a
dilute non-ideal quantum gas (see, e.g., [32–34]) and is
also important in dense quantum systems (see, e.g., [35]).
The ‘on-energy-shell’ T -matrix controls the collisional re-
laxation rate of a gas in a Boltzmann kinetic description.

While it might be intuitively clear that exciton-exciton
scattering should somehow be describable in terms of the
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concepts and language developed in the field of standard
two-body scattering theory, it turns out that the corre-
spondences and analogies are quite complicated, and that
they require a detailed analysis which states the exact con-
ditions for those correspondences and analogies to hold.
It is the goal of this paper to present such an analysis for
the specific case of χ(3) response dominated by 1s-heavy-
hole excitons. This is probably the best-studied case and
it allows, in our opinion, the closest conceptual link be-
tween nonlinear semiconductor optics and standard scat-
tering theory. The underlying reason for this link to be
valid only in an approximate fashion is the fact that ex-
citons are inherently composite particles (for which the
simplest scattering process involves four particles, two
electrons and two holes). One consequence of the exci-
ton’s compositeness is the fact that the interaction ma-
trix elements consist of direct and exchange contributions.
Also, in higher-order scattering processes the intermedi-
ate states can be excitons with higher internal quantum
numbers (apart from 1s-excitons with arbitrary of center-
of-mass momentum). Yet another consequence is that the
asymptotic states for a scattering event – product two-
exciton plane wave states antisymmetrized with respect
to the electron pair and the hole pair – are not exactly
orthonormal to each other.

Although the situation here bears some similarity to
the collision between two hydrogen atoms studied in depth
in atomic physics, there are two crucial differences. First,
coherent excitons are created (by the external field) with
an energy-momentum relation closer to that of photons
than that of real free excitons, while in an atomic colli-
sion experiment, real free atoms are prepared in the initial
state and measured in the final state. One consequence,
among others, of this difference is that coherent (virtual)
excitons can be created with the right energies and mo-
menta for them to scatter into a bound biexciton, while
the hydrogen molecule is ruled out by energy conservation
as a physical final state in a collision between two (real)
hydrogen atoms. In scattering language, the two types of
experiments probe two different parts of the T -matrix.
The second difference is that the electron-hole mass ra-
tios in semiconductors are generally much larger than the
electron-proton mass ratio which is practically zero. It
turns out that the T -matrix, and the complications arising
from the exciton’s fermion constituents, have a non-trivial
dependence on the electron-hole mass ratio.

Apart from all these aspects, which will be addressed
in detail in this paper, we are also interested in identifying
exact analogies between the exciton-T -matrix and conven-
tional T -matrices in two dimensions for two-particle scat-
tering with (generic) short-range potentials. The fact that
we are dealing with a quasi-two-dimensional system is im-
portant in the sense that, in 2D, the ordinary T -matrix
follows some generic (independent of the potential) low-
energy behaviors which are distinctive of the system’s
dimensionality only ([33]). It is interesting to see if the
exciton-T -matrix exhibits the same behaviors. All of the
above issues, which will be examined below, are intimately
related to the question: to what extent can one express the

theory of χ(3) optical response of a quantum well as an ef-
fective theory of interacting ‘elementary’ excitons?

In the following section, we review the DCT formalism
and give detailed account of our approach. In Section 3
we present a detailed discussion of the excitonic T -matrix
based on our numerical results. This includes a discus-
sion of contributions from other than 1s-exciton states,
details of the excitonic interaction potential, the role of
the exciton wave function overlap matrix, the biexciton
binding energy, and the properties of the off-energy-shell
T -matrix. In Section 4 we summarize the work presented
in this paper.

2 Theory

In this section we review the basic set of equations of the
DCT theory [28], evaluated in third-order in the light field
amplitude.

As for the measurement configuration, we assume to
have a single quantum well and one or two incoming light
pulses. The pulses are assumed to propagate normal to
the quantum well (QW). However, in the case of two light
pulses we assume the two propagation directions to be
slightly different, so that the pulses (called pump and/or
probe) can be distinguished by their direction, while the
selection rules for both are assumed to be those for normal
incidence.

2.1 χ(3) dynamics controlled truncation equations
in the exciton basis

We start with the Hamiltonian of the many-particle sys-
tem in two dimensions coupled to an external electro-
magnetic field,

H = H1 +H2 +Hfield, (1)

H1 =
∑
ks

Es(k)a†s(k)as(k) +
∑
kj

Ej(k)a†j(k)aj(k), (2)

H2 =
1

2A

∑
q 6=0,k,k′

V (q)

×
[∑
ss′

a†s(k + q)a†s′(k
′ − q)as′(k′)as(k)

+
∑
jj′

a†j(k + q)a†j′(k
′ − q)aj′(k′)aj(k)

−
∑
sj

(
a†s(k + q)a†j(k

′ − q)aj(k′)as(k)

+a†j(k + q)a†s(k
′ − q)as(k′)aj(k)

)]
, (3)

Hfield =∑
sjk

[
dsj ·E(t)a†s(k)aj(−k) + djs ·E(t)a†j(−k)as(k)

]
(4)

where s denotes the set of quantum numbers (band in-
dex, spin projection) other than two-dimensional momen-
tum assigned to a single electron orbital in a conduction
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band, and j denotes the set for a hole orbital in a valence
band. Es(Ej) is the band-model single electron (hole) en-
ergy, dsj ≡ qe〈s|r|j〉 is the transition dipole matrix ele-

ment, V (q) = 2πqe
2

εb|q| , qe is the magnitude of the electron’s
charge, εb is the background dielectric constant of the QW
material, and A is the area of the normalization box. For
simplicity, the single-particle part H1 is assumed to be di-
agonal in the band indices. Only the part of the Coulomb
interaction that does not cause an interband transition
is retained in the model. This approximation makes the
tremendous simplification of the many-body problem in
the DCT formalism possible. The ground state of the sys-
tem is the electron-hole vacuum, which is assumed to be
stable against electron-hole creation by virtue of a large
enough band gap.

The dynamics controlled truncation (DCT) sche-
me [28] provides a formalism for studying Coulomb cor-
relations in weakly-nonlinear coherent optics of semicon-
ductors. Under the assumptions that (i) the initial state
is the ground state, and (ii) the Coulomb interaction does
not induce interband transitions, DCT systematically and
rigorously truncates, at each order of the applied field, the
infinite hierarchy of coupled equations of motion of den-
sity matrices. To each perturbation (in the applied field)
order, all Coulomb correlations are exactly carried by the
resulting closed equations. In this paper, the third order
DCT equation will be used to relate measurable quan-
tities in the coherent nonlinear regime to the common
concept of two-dimensional scattering (between excitons).
The DCT equations govern the evolution of fermionic den-
sity matrices. To have a description based on excitons, we
will follow [36–38] in transforming the equations from the
electron-hole basis to the exciton basis.

In χ(3), only two density matrices, the interband
polarization and the coherent biexcitonic amplitude,
need to be considered. The interband polarization in the
exciton basis is defined as:

psjn (t) =
∑
k

φsj∗n (k)〈aj(−k, t)as(k, t)〉, (5)

where φsjn (k) is the nth lowest exciton eigenfunction con-
sisting of an electron from band s and a hole from band j,
〈· · · 〉 denotes averaging with respect to the initial density
operator, and the creation (annihilation) operators are in
the Heisenberg representation. In general, the interband
polarization also depends on the momentum q governing
the center-of-mass motion, but in our Hamiltonian equa-
tion (1), we have assumed that the excitation is spatially
homogeneous, allowing only for an interband polarization
with q = 0. The coherent biexcitonic amplitude in the 2D
single-particle momentum basis is defined as:

bsjs′j′(k1,k2,k3,k4, t) =〈
aj′(−k4, t)as′(k3, t)aj(−k2, t)as(k1, t)

〉
−
〈
aj′(−k4, t)as′(k3, t)

〉 〈
aj(−k2, t)as(k1, t)

〉
+
〈
aj′(−k4, t)as(k1, t)

〉 〈
aj(−k2, t)as′(k3, t)

〉
· (6)

For spatially homogeneous excitations, we have the condi-
tion k1−k2 +k3−k4 = 0. We specialize to the case where

only one conduction band is involved so that s denotes
only the spin projection along the normal to the QW’s
plane. This electron spin is taken to be s = ±1/2. The ex-
citon wavefunctions are assumed to be independent of the
electron spin, which is then dropped from the wavefunc-
tion symbol. Moreover, since the interactions among the
four fermions are spin-independent, the (2e, 2h) Hamilto-
nian is block diagonal in the eigenstates of the total elec-
tron spin. It is therefore advantageous to use linear com-
binations of bsjs′j′ that correspond to these eigenstates:

bλsjs′j′(k1,k2,k3,k4, t) =
1
2

[bsjs′j′(k1,k2,k3,k4, t)

+λbs′jsj′ (k1,k2,k3,k4, t)] , (7)

where λ = +1(−1) labels the channel with total electron
spin 1(0) or triplet(singlet). Taking the effective mass ap-
proximation for the electrons and the holes, we can also
expand bλsjs′j′ in a two-exciton basis:

bλsjs′j′(k1,k2,k3,k4) =∑
nm

[
φjn(αk1 + βk2)φj

′

m(α′k3 + β′k4)bsjs
′j′λ

nm (k1 − k2)

− λ φjn(αk3 + βk2)φj
′

m(α′k1 + β′k4)bsjs
′j′λ

nm (k3 − k2)
]

(8)

where α = mj/Mj and β = me/Mj are the ratios of the
hole (mj) mass, which depends on the band j, and the
electron (me) mass to the exciton mass Mj = me + mj ,
and α′ and β′ are similarly related to mj′ . This expan-
sion, borrowed from molecular physics, has the advantage
over an expansion using only the first (direct) term that
the (anti)symmetry of bλsjs′j′(k1,k2,k3,k4) in the four-
fermion momentum space is satisfied for each combination
of (n,m) (antisymmetry under electron exchange imposes
no restrictions on the expansion coefficient bsjs

′j′λ
nm (q),

while antisymmetry under hole exchange imposes the con-
dition bsj

′s′jλ
mn (−q) = bsjs

′j′λ
nm (q)). In other words, proper

exchange antisymmetry of the four-fermion system would
be retained in the theory under any truncation of the exci-
ton basis. The coefficients, representing the coherent biex-
citonic correlation function for two excitons with center-
of-mass momenta q and −q, internal quantum numbers n
and m, and involving two electrons in bands s and s′ and
two holes in bands j and j′, are given by

bsjs
′j′λ

nm (q)=
∑
n′m′q′

(
1− λSjj′

)−1

nmn′m′
(q,q′)

∑
kk′

φj∗n′ (k + αq′)

φj
′∗
m′ (k′ + β′q′) bλsjs′j′(k + q′,k,k′,k′ + q′). (9)

The presence of the overlap matrix

Sjj
′

nmn′m′ (q,q
′) =

∑
k

φj∗n (k + αq)φj
′∗
m (k + q′ + β′q)

× φjn′ (k + αq′)φj
′

m′ (k + q + β′q′) , (10)
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expresses the antisymmetry of bλsjs′j′(k1,k2,k3,k4), or
equivalently, the fact that the basis of antisymmetrized
two-exciton states is not orthogonal. In equation (9),
Sjj

′

nmn′m′ (q,q
′) should be seen as a matrix in the basis

labeled by the set (n,m,q), with j, j′ being parameters.
It is in this way that the inverse matrix (1 − λSjj′ )−1 is
defined.

Transforming the χ(3)-DCT equations from the
electron-hole momentum basis to the exciton basis [38],
one gets a closed, coupled set of equations of motion for
psjn (t) and bsjs

′j′λ
nm (q, t):

i~
d
dt
psjn =

(
εsjn (0)− iγ2

)
psjn −Ωsjφ̃j∗n (0)

+
∑

s′j′mm′

[
Ωs′jA

jj′j′

nmm′p
sj′

m′p
s′j′∗
m +Ωsj′A

jj′j
nmm′p

s′j
m′p

s′j′∗
m

]
+

∑
s′j′mn′m′

V
HF(jj′)
nmn′m′p

s′j
n′ p

sj′

m′p
s′j′∗
m

+
∑

s′j′mn′m′λq′

ps
′j′∗
m W

xx(jj′λ)∗
n′m′nm (q,0)bsjs

′j′λ
n′m′ (q) (11)

i~
d
dt
bsjs

′j′λ
nm (q) =

∑
n′m′q′

H
xx(jj′λ)
nmn′m′ (q,q′) bsjs

′j′λ
n′m′ (q′)

− iγbbsjs
′j′λ

nm (q) +
∑

n′m′rsq′

1
2

(
1− λSjj′

)−1

nmrs
(q,q′)Wxx(jj′)λ

rsn′m′

× (q′, 0)
[
psjn′p

s′j′

m′ + λps
′j
n′ p

sj′

m′

]
. (12)

The definitions of the coefficients are as follows. εsjn (q = 0)
is the exciton energy of excitons with zero center-of-mass
momentum, γ2 is the inverse dephasing time of the radia-
tive transition, Ωsj is (~ times) the Rabi frequency associ-
ated with bands s and j: ~Ωsj ≡ −dsj ·E, and φ̃j∗n (r = 0)
is the configuration space exciton wavefunction at the ori-
gin of the relative coordinates. Ajj

′j′

nmm′ denotes the exciton
wavefunction integral associated with Pauli blocking,

Ajj
′j

nmn′ =
∑
k

φj∗n (k)φj
′∗
m (k)φjn′(k). (13)

W
xx(jj′λ)
nmn′m′ (q,q′) is the sum (λ = 1) or difference (λ = −1)

of the direct and exchange exciton-exciton interaction ma-
trix elements, respectively:

W
xx(jj′λ)
nmn′m′ (q,q′) =W

c(jj′)
nmn′m′ (q,q

′) + λW
xc(jj′)
nmn′m′ (q,q

′)

(14)

W
c(jj′)
nmn′m′(q,q

′) =V (q− q′)M j
nn′(q− q′)M j′

mm′(q
′ − q)

(15)

W
xc(jj′)
nmn′m′ (q,q

′) =∑
kk′

V (k− k′)φj∗n (k + α (q− q′))φj
′∗
m (k′ + β′q + βq′)

×
[
φjn′(k)− φjn′ (k′)

] [
φj
′

m′ (k + α (q− q′) + βq + β′q′)

−φj
′

m′ (k
′ + α (q− q′) + βq + β′q′)

]
· (16)

W c(jj′) and W xc(jj′) are the Fourier transforms (relative
to the exciton center-of-mass coordinates) of the direct
and exchange exciton interactions in e.g. [39,40]. We note
that through the exchange term, optically inactive exciton
states are also included in the eigenfunction basis here. In
the direct term, the so-called excitonic transition matrix
elements is defined by

M j
nn′(q) =

∑
k

φj∗n (k)
[
φjn′(k + βq)− φjn′(k− αq)

]
·

(17)

The zero-q limit of W xx(jj′) gives the Hartree-Fock matrix
element: λV HF(jj′)

nmn′m′ = W
xx(jj′λ)∗
n′m′nm (0, 0) .

Equation (12) for bsjs
′j′λ

nm (q) is essentially an inhomo-
geneous Schrödinger equations for the two-electron-two-
hole system in the two-exciton basis. The effective two-
exciton Hamiltonian is

H
xx(jj′λ)
nmn′m′ (q,q′) =

(
εsjn (q) + εsj

′

m (q)
)
δnn′δmm′δq,q′

+
∑
rsk

(
1− λSjj′

)−1

nmrs
(q,k)Wxx(jj′λ)

rsn′m′ (k,q′) (18)

which contains the overlap matrix again as a result of
the nonorthogonality of the antisymmetrized two-exciton
wavefunctions. If we consider the limit of infinite hole mass
and restrict the expansion to 1s-functions only, the ki-
netic energy vanishes and the interaction as well as the
overlap matrix depend on q − q′ only. For a finite hole
mass, however, the interaction remains nonlocal and also
nonhermitian, which will be discussed later. Another phe-
nomenological dephasing rate, γb, has been introduced,
which represents (rather crudely) the dephasing effects of
the environment, e.g. phonons and other excitons, on the
correlated propagation of the two coherent excitons. One
may write γb in the form γb = 2γ2+δ, where 2γ2 represents
the dephasing suffered by the two excitons individually be-
tween two scatterings off each other, and δ represents de-
phasing processes that irreducibly involve both excitons.
Setting γb to 2γ2, as we do in this paper, amounts to
assuming that the irreducibly two-exciton dephasing pro-
cesses are negligible. The contributions to γb from other
excitons present in the system are of higher order in the
exciting field and are therefore negligible in the χ(3) regime
considered in this paper. A quantitative estimate of γb is
beyond the scope of this paper.



R. Takayama et al.: T -matrix analysis of biexcitonic correlations in the nonlinear optical response 449

G
(jj′λ)

nmn′m′(Ω) =
1

2

X
Jn′′m′′n′′′m′′′qq′

h
W

xx(jj′λ)∗
n′′m′′nm (q,0)ζ

(jj′λ)J
n′′m′′ (q)

i h
ζ

(jj′λ)J∗
n′′′m′′′ (q′)W

xx(jj′)λ
n′′′m′′′n′m′ (q

′,0)
i

~Ω − ε(jj′λ)
J + iγb

· (27)

Equation (12) may be solved formally to give the biex-
citonic amplitude as

bsjs
′j′λ

nm (q, t) =
∫ ∞
−∞

dt′
∑

rsn′m′q′

G̃(jj′λ)
nmrs (q,q′, t− t′)

×Wxx(jj′)λ
rsn′m′ (q′,0)

[
psjn′ (t

′) ps
′j′

m′ (t′) + λps
′j
n′ (t′) psj

′

m′ (t
′)
]
,

(19)

where the retarded two-exciton propagator is

G̃(jj′λ)
nmrs (q,q′, t− t′)

=
1

2i~
θ (t− t′)

∑
r′s′q′′

[
e−

i
~ [Hxx(jj′λ)−iγb](t−t′)

]
nmr′s′

× (q,q′′)
(

1− λSjj′
)−1

r′s′rs
(q′′,q′) . (20)

Here again G̃(jj′λ), Hxx(jj′λ) are matrices in the basis
(n,m,q). Substituting the expression equation (19) into
equation (11) eliminates bsjs

′j′λ
nm (q) in favor of a closed

equation for psjn : the last term of equation (11) would
become

i~
d
dt
psjn (t) |corr.≡

∑
s′j′λmn′m′

ps
′j′∗
m (t)

×
∫ ∞
−∞

dt′G̃(jj′λ)
nmn′m′(t− t′)

[
psjn′(t

′)ps
′j′

m′(t
′) + λps

′j
n′ (t

′)psj
′

m′(t
′)
]
,

(21)

G̃
(jj′λ)
nmn′m′ (t− t′) =∑

n′′m′′n′′′m′′′qq′

W
xx(jj′λ)∗
n′′m′′nm (q,0)G̃(jj′λ)

n′′m′′n′′′m′′′

× (q,q′, t− t′)Wxx(jj′)λ
n′′′m′′′n′m′ (q

′,0) . (22)

As can be seen, the retarded Coulomb correlational dy-
namics between the two excitons is governed by the ker-
nel G̃(jj′λ)

nmn′m′(t − t′). Its spectral properties, given by its
Fourier transform

G
(jj′λ)
nmn′m′(Ω) =

1
2

∑
n′′m′′n′′′m′′′qq′

W
xx(jj′λ)∗
n′′m′′nm (q,0)

×
[

1
~Ω −Hxx(jj′λ) + iγb

(
1− λSjj′

)−1
]
n′′m′′n′′′m′′′

× (q,q′)Wxx(jj′)λ
n′′′m′′′n′m′ (q

′,0) , (23)

is the object of main interest in this paper.

The exponential of Hxx(jj′λ), or the inverse of ~Ω −
Hxx(jj′λ) + iγb, may be computed by, among other ways,
diagonalization. The construction is standard except for
the slight complication that Hxx(jj′λ) is not a hermitian
matrix in the (n,m,q) basis. This loss of ’manifest’ her-
miticity is again an artifact of the basis: the matrix of the
same Hamiltonian in the electron and hole single-particle
momentum basis (k-basis for short) is Hermitian. The two
representations, exciton (n,m,q) and fermionic (k-), of
the (2e–2h) Hamiltonian must of course have the same
(real) eigenvalue spectrum. Taking the orthogonality rela-
tion of the eigenvectors in the k-basis and transforming to
the (n,m,q) basis, one can easily show that the eigenvec-
tors in the (n,m,q) basis are ’orthogonal relative to S’.
Explicitly, let {ε(jj

′λ)
J } and {ζ(jj′λ)J

nm (q)} be respectively
the set of eigenvalues and eigenvectors, labeled by J , of
Hxx(jj′λ) for given j, j′, λ. Then∑
nmq,n′m′q′

ζ(jj′λ)J∗
nm (q)

(
1− λSjj′

)
nm,n′m′

× (q,q′) ζ(jj′λ)J′

n′m′ (q′) = δJJ′ . (24)

For the following construction of G̃(jj′λ), we simplify the
notation to a ≡ (n,m,q). Let Ujj′λ denote the matrix
constructed by assembling the eigenvectors in columns:
Ujj

′λ
aJ = ζ

(jj′λ)J
a . Then the two-exciton propagator in

equation (20) is given by:

G̃(jj′λ)
aa′ (t− t′) =

1
2i~

θ(t− t′)
∑
Ja′′

e−
i
~ [ε

(jj′λ)
J −iγb](t−t′)

×
[
Ujj′λ

]
aJ

[
Ujj′λ

]−1

Ja′′

(
1− λSjj′

)−1

a′′a′
(25)

and its Fourier transform by

G(jj′λ)
aa′ (Ω) =

1
2

∑
Ja′′

[
Ujj′λ

]
aJ

[
Ujj′λ

]−1

Ja′′

~Ω − ε(jj′λ)
J + iγb

(
1− λSjj′

)−1

a′′a′

=
1
2

∑
J

ζ
(jj′λ)J
a ζ

(jj′λ)J∗
a′

~Ω − ε(jj′λ)
J + iγb

· (26)

The last equality is valid because Ujj′λ, though not uni-
tary, obeys the relation [Ujj′λ]−1 = [Ujj′λ]†(1 − λSjj

′
).

We note, however, that the equivalence of two forms
strictly holds when the problem is solved in the entire ba-
sis space; it may be spoiled under truncation of the basis
or other approximations. With equation (26), the retarded
exciton-exciton correlation kernel in frequency space equa-
tion (23) is

See equation (27) above.
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The calculation of G(jj′λ)
nmn′m′(Ω) may be simplified if we

assume that the Hamiltonian equation (18) is invariant
under rotation in the quantum well’s plane. In this case,
one can advantageously work in the angular momentum
basis conjugate to the angle coordinate of q: it is shown
in Appendix A that the four-fermion Hamiltonian can be
decoupled into blocks labeled by the total (z-component
of the) angular momentum.

2.2 The 1s exciton-exciton T-matrix

While the above equations are still the most general equa-
tions in the coherent χ(3)-regime, owing to the fact that
there are infinitely many internal exciton quantum num-
bers, they are in general much more difficult to solve than
the equations written in a straightforward one-particle
momentum-space formulation. The computational benefit
of the exciton representation lies in the fact that, under
certain conditions, the 1s-excitons dominate the optical
response and, therefore, are the only contributions to the
above equation that need to be taken into account. In
the following we will consider the case in which the 1s-
excitons may be assumed to be dominant. Specifically, we
assume resonant 1s-exciton excitation with light pulses
whose spectrum covers only the 1s-hh-exciton. Even in
this case, when all three ‘source’ interband polarizations
in equation (21) are restricted to 1s, we can see from equa-
tion (22) that during the two excitons’ propagation from t
to t′, they may still scatter off each other into higher inter-
nal states. Equation (27) shows that these higher states’
contributions are suppressed to a certain extent by the
energy denominator, but the critical dependence is on
the size of W xx(jj′λ)

nm1s1s (q,0), n,m 6= 1s. Estimates shown in
the next section will indicate that these contributions from
higher exciton intermediate states are indeed quite small.
So it is of practical interest to discuss the theory in the
approximation where all excitonic quantum numbers are
restricted to 1s. In this major simplification, all matrices
such as Wxx(jj′λ)

nmn′m′ (q,q′) reduce to matrices indexed only
by q and q′. Exciton state labels (n,m, n′,m′ etc) will be
dropped from all symbols, except where noted otherwise,
with the understanding that they are all 1s. Moreover,
we will restrict ourselves to two parabolic bands, i.e., one
conduction band and one heavy-hole valence band: the
orbital label j just represents the hole spin projection,
taking the values ± 3

2 . We can then label the interband
polarization by the exciton’s spin p± ≡ p∓

1
2± 3

2 . The 1s ex-
citon wavefunction in our model is φ(k) =

√
2πa0

[1+(a0k/2)2]3/2 ,

where a0 ≡ ~2εb
qe2mr

is the exciton Bohr radius, mr being
the electron-hole reduced mass. Since this wavefunction
is independent of j, so are all the system coefficients and
matrix elements in the interband polarization’s equation
of motion.

In this case, equation (11) together with equation (21)

are simplified to

i~
d
dt
p±(t) = (ε(0)− iγ2)p±(t)−Ω±(t)φ̃∗(0)

+ 2Ω±(t)APSFp±(t)p∗±(t) + V HFp±(t)p±(t)p∗±(t)

+ 2p∗±(t)
∫ ∞
−∞

dt′G̃+(t− t′)p±(t′)p±(t′)

+ p∗∓(t)
∫ ∞
−∞

dt′
[
G̃+(t− t′) + G̃−(t− t′)

]
p∓(t′)p±(t′).

(28)

The phase space filling constant, the HF constant, and
the configuration space exciton wavefunction at r = 0
have the explicit expressions

APSF =
∑
k

φ∗(k)φ∗(k)φ(k) =
4
√

2π
7

a0 (29)

V HF = 2
∑
kk′

V (k− k′)|φ(k)|2φ(k′) {φ∗(k) − φ∗(k′)}

= 2π
(

1− 315π2

4096

)
a2

0Eb ∼ 1.52a2
0Eb, (30)

φ̃∗(0) =
∑
k

φ∗(k) =
2
√

2
a0
√
π

(31)

where Eb ≡ 2~2

mra02 is the 2D exciton Rydberg. The quan-
tities Hxxλ,Wxxλ, Gλ, and S, defined in the previous sub-
section, are all reduced to matrices in q. As explained in
Appendix A, angular momentum conservation reduces the
construction of G̃λ to a one-dimensional problem, involv-
ing only the radial coordinate of q. The numerical solution
of this reduced problem is discussed in the next section.

In the remainder of this section, we will interpret
the two-exciton propagation in equation (28) in terms of
the concepts in general scattering theory in two dimen-
sions. To this end, we consider the following combina-
tions in the two total electron spin channels: T λ(Ω) ≡
λV HF + 2Gλ(Ω). Noting that λV HF = Wxx(λ)∗(0,0) and
equation (23), we can write T λ(Ω) explicitly as:

T λ(Ω) = W xx(λ)∗(0,0) +
∑
qq′

Wxx(λ)∗(q,0)

×
[

1
~Ω −Hxx(λ) + iγb

(1− λS)−1

]
qq′

Wxx(λ) (q′,0) .

(32)

We can compare the structure of this equation with that
of the Lippmann-Schwinger equation (see e.g. [31]) for the
scattering amplitude or T -matrix of an elastic collision
between two particles. For convenience of reference, we
include a short recap of the latter here. Take a generic
Hamiltonian Hpp = Hpp

0 + V for two particles where Hpp
0

is the kinetic energy and V is a short-ranged, possibly
nonlocal, potential defined in the basis of relative momen-
tum eigenstates. We work in the center-of-mass frame in
which the kinetic energy matrix element between states
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k(b)

× Ω

Ω=
2k2

2Mr

T

2nd Born
{

(a)

k

Ω
(c)

Fig. 1. (a) Schematic visualization of the T -matrix. The squig-
gly lines represent the interaction. (b) Schematic of the domain
of the T -matrix. The cross and dashed line indicate the posi-
tion of the biexciton pole. (c) Schematic of the creation of
coherent excitons as virtual particles and their transition into
incoherent excitons as real populations.

of relative momenta k and k′ is Hpp
0 (k,k′) = δk,k′

~2k2

2Mr
,

Mr being the reduced mass of the two body system. The
Lippmann-Schwinger equation for the (off-energy-shell,
retarded) T -matrix element of energy ~Ω between states
of relative momenta k and k′ is

TLS(k,k′, Ω) =V (k,k′)

+
∑
qq′

V (k,q)
[

1
~Ω −Hpp + iη

]
qq′
V (q′,k′)

(33)
=V (k,k′)

+
∑
qq′

V (k,q)
[

1
~Ω −Hpp

0 + iη

]
qq′

× TLS(q′,k′, Ω), η ↘ 0. (34)

The second equality, equation (34), defines via itera-
tion a perturbation theory for TLS(k,k′, Ω) which is
schematically represented in Figure 1a. via the Lippmann-
Schwinger equation, the T -matrix is in general defined for
all values of its argument (k,k′, Ω), even for complex Ω.
The magnitude squared of its value on the energy shell,
i.e. |k| = |k′| = k and ~Ω = ~2k2

2Mr
, yields the differen-

tial cross section of elastic scattering between the direc-
tions k̂ and k̂′. The relation between the on-shell part of
the T -matrix and the more general off-shell part is illus-
trated in Figure 1b, where the case of principal interest
here – forward scattering, k = k′ – is shown. As is well
known, the off-energy-shell T -matrix plays a significant
role in the statistical mechanics of quantum many-body
systems. In particular, it governs the equilibrium behavior
of dilute nonideal quantum gases. We may also interpret
the colliding particles as having ‘off-energy-shell’ initial
and final states, i.e., products of single-particle states with
well-defined frequency and momentum which however are
not related by the free-particle dispersion relation. We re-
fer to these states also as ‘virtual’ and the on-energy-shell
states as ‘real’. One more point of interest in this paper
is that −ImTLS(k,k, Ω) gives the rate of scattering of two
virtual particles with relative momentum k to real par-

ticles with momentum magnitude
√

2Mr~Ω/~. The un-
derlying scattering process is schematically shown in Fig-
ure 1c. The two off-resonantly created excitons which are
not on the exciton-energy dispersion curve, and which cor-
respond to real but transient excitonic polarizations (co-
herent excitons), scatter via exciton-exciton interaction
onto the exciton-dispersion. This results in the popula-
tion of “real” incoherent excitons. The mathematical de-
scription of these populations, however, is beyond the χ(3)-
regime and therefore not part of the analysis in this paper.
The χ(3)-regime contains only information about the scat-
tering out of the state of two virtual (coherent) excitons,
not the scattering into specific real excitons. Note that
our distinction between virtual and real particles is based
on the assumption of zero linewidth (or, at least, zero
spectral overlap between the light spectrum and the zero-
momentum exciton spectrum), and that it is only valid for
the case of off-resonant excitation.

Comparing equation (32) with equation (33), we see
that T λ(Ω) in the zero damping limit may be interpreted
as the forward (k̂ = k̂′) off-shell scattering amplitude,
or T -matrix, for zero momentum and energy ~Ω with
caveats stemming from the use of the antisymmetrized
two-exciton basis: the presence of the overlap matrix
S, and the nonhermiticity of the interaction W xx(λ).
We will present a numerical analysis in the next section
that shows, in spite of these complications, T λ(Ω) still
behaves like a typical two-particle scattering amplitude
(as defined by Eq. (33). For example, it is known that,
in two dimensions, the zero-momentum off-energy-shell
T -matrix for a generic hermitian, short-ranged, even
nonlocal potential behaves asymptotically at low energies
as [33] TLS(0,0, z) ≈ − 2π~2

Mr

1
ln[(−z)/εc] , where z is in

general complex. This asymptotic behavior holds for
|z| � εc, where εc is an energy scale that depends on the
specific V (k,k′) in each problem. In the exciton termi-
nology and units used here, this asymptotic formula reads:

TLS(0,0, ~Ω+iγb) ≈ −
2πα(1− α)

ln(−(~Ω − 2ε(0) + iγb)/εc)
a0

2Eb.

(35)

We will see that T λ(Ω) follows this behavior quite well.
With this and other results in the next section, we in-
terpret T λ(Ω) as the zero-momentum off-energy-shell
T -matrix for two colliding excitons with total electron
spin 1 (λ = 1) or 0 (λ = −1).

The role of the T -matrix in the χ(3) equation equa-
tion (28) is slightly more explicit if we go to the chan-
nels of parallel (++) and opposite (+−) exciton spins:
T++(Ω) ≡ T +(Ω) and T+−(Ω) ≡ (T +(Ω) + T −(Ω))/2.
The three terms involving interactions (HF and correla-
tions) between the two excitons in equation (28) can be
written compactly in terms of the inverse Fourier trans-
forms of T++(Ω) and T+−(Ω):

p∗±(t)
∫ ∞
−∞

dt′T̃++(t− t′)p±(t′)p±(t′) + p∗∓(t)

×
∫ ∞
−∞

dt′T̃+−(t− t′)p∓(t′)p±(t′). (36)
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Roughly, the two excitons are created with energies and
momenta obeying the photon dispersion relation instead
of that of real excitons. That is why their scattering is
described by the off-energy-shell part of the T -matrix in-
stead of the usual on-shell part. In the statistical mechan-
ics of dilute gases, it is the correlation with surrounding
particles that modifies the energy-momentum dispersion
relation of a particle. From these considerations, coherent
nonlinear optics can be seen as a probe on the off-shell ex-
citonic T -matrix, which can then be used to estimate ther-
modynamic quantities of a dilute low-temperature exciton
gas. Moreover, a theoretical model validated by compari-
son with these experiments can also yield the on-shell part
of the excitonic T -matrix from which excitation-induced
dephasing and relaxation rates can be obtained.

3 Estimation of off-energy-shell T-matrix

In the previous section we reviewed the DCT equations
in the exciton basis. We have seen that in this formal-
ism the (spin-dependent) four-particle correlation terms
can be represented as the off-energy-shell forward scatter-
ing (or T -) matrix element for two (virtual) particles. Of
course, in the exact four-fermion theory, the entire exciton
basis set, 1s and higher, has to be included as intermediate
states in the calculation of the T -matrix. In other words,
even though the external light field creates only (virtual)
1s-excitons with zero center-of-mass momentum, the (vir-
tual) scattering processes include states that are not re-
stricted to 1s or zero center-of-mass momentum. From a
practical point of view, it is relatively easy to include non-
zero center-of-mass momentum 1s-exciton states as inter-
mediate states, but it is very difficult to include higher
exciton states (2s, 2p, ..., and exciton-continuum states).

Since we can, for practical reasons, evaluate the χ(3)

theory only with arbitrary center-of-mass momentum 1s-
exciton states as intermediate states (we call it the “1s-
approximation”), we have to address the issue of how
good this approximation is. Unfortunately, there exist no
simple criterion based on small parameter. Therefore, a
rigorous analysis of the quality of the 1s-approximation
could only be achieved by a comparison with the full,
non-approximate solution. While this is not feasible, it
is still instructive to discuss a number of individual as-
pects of the theory that are related to the influence of
higher exciton states and the mathematical consequences
of the 1s-approximation. In the following, we will first in-
vestigate the contribution of higher exciton states to the
interaction matrix elements. We will also discuss math-
ematical artefacts of the interaction matrix elements in
the 1s-approximation. We will discuss the role of the exci-
ton overlap matrix element within the 1s-approximation
and possible artefacts related to it. Evaluating the the-
ory within the 1s-approximation, we study the quality of
the biexciton state obtained through direct matrix diago-
nalization. Finally, we will discuss the low-energy behav-
ior of the T -matrix in the 1s-approximation and compare
it to results well-known for two-particle correlations in

2-dimensional systems in which the interaction potential
is short-ranged.

3.1 Contributions from higher exciton states

In this section, we study the influence of interaction ma-
trix elements Wnm,n′m′ involving exciton states other than
1s. Since each term in the T -matrix summation that we
obtained in Section 2 begins and ends with the optically
excited (virtual) excitons (i.e., 1s-excitons with q = 0),
we focus on matrix elements that couple the optically
excited 1s-excitons to higher states: Wnm,1s1s; in other
words, we look at the beginning or, equivalently, the end
of each ladder-type diagram (cf. Fig. 1a). We argue that,
if these matrix elements are much smaller than the ones
used in the 1s-approximation, W1s1s,1s1s, then the 1s-
approximation is valid unless some other matrix elements
Wnm,n′m′ (with n,m, n′,m′ 6= 1s) overcompensate the ef-
fects of the small Wnm,1s1s (with n,m 6= 1s) elements.
While we cannot rule that out, we don’t believe that
to be likely. As for the matrix elements Wnm,1s1s (with
n,m 6= 1s), we should ideally study all possible quantum
numbers n and m. Again, for practical reason, we restrict
ourselves to a few examples for n and m. We believe these
examples to be representative and we believe that other
matrix elements are likely to be smaller than the ones we
study here. To be concrete, we evaluate Wnm,1s1s for n,m
assuming the values in the set {1s, 2s, 2px, 2py}.

As a figure of merit regarding the influence of higher
exciton states on Wλ

nm,1s1s (q,q′), we plot in Figure 2 the
integrals

∑
q |Wxxλ

nm,1s1s(q, 0)|2, as a function of electron
hole mass ratio. In the numerical integration, we limit the
range of q = |q| to 66 a−1

0 (where a0 is the exciton Bohr
radius), and use a step size of 0.2 between 0 and 6, and
2.50 between 6 and 66. The step size in the azimuth angle
was taken to be π/16.

As can be seen from Figure 2, the (m,n) = (1s,1s)
contributions are always dominant in this figure of merit.
Only a small number of individual contributions from
higher exciton states reach the level of a few percent (none
greater than 7%) of that from (1s,1s) state for both the
singlet and triplet channels. The others are much smaller.
Therefore, we believe that the neglect of higher exciton
states as intermediate scattering states in the T -matrix is
a valid approximation provided that only 1s-excitons are
optically excited. In other words, if we look at a contribu-
tion to the T -matrix with, say, n interaction lines, and we
compare such a contribution that contains only 1s-states
as intermediate states with a contribution that contains
two transitions between 1s and 2s (or 2p), i.e., the two
ends of that contribution, as well as intermediate transi-
tions from, say 2p to 3s, we can assume that the latter
is smaller by about one order of magnitude than the for-
mer. This is true if the intermediate transitions (like, for
example, the 2p-to-3s transition) is not much larger than
the intermediate transitions in the T -matrix that has only
1s-to-1s transitions. This assumption, albeit not proven,
seems at least reasonable.
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Fig. 2. The contributions from higher exciton states as a func-
tion of electron-hole mass ratio. Upper panel: singlet channel.
Lower panel: triplet channel. The intermediate states (m,n)
are indicated in the figures.

Although the sizes of individual matrix elements
Wnm,1s1s, (n,m) 6= (1s, 1s) are small, one needs to sum
over an infinity of these intermediate states. The to-
tal non-1s correction is thus a result of competition, for
increasing intermediate-state energies, between a growing
density of states and the decay of the transition matrix
elements squared. At present we are not able to give a
rigorous analysis of this point. From the trend of those
Wnm,1s1s that we have calculated, we note that the de-
cay is probably sufficiently fast to cut off the sum over
states effectively. An additional factor favoring suppres-
sion is the energy denominator in the T -matrix (for exam-
ple, Eq. (26)). Apart from this direct estimate of higher
order contributions, the validity of the neglect of higher
intermediate states can be inferred from certain final re-
sults of the theory, for example from a comparison of the
biexciton binding energy obtained within this approxima-
tion with other theories, notably variational approaches
(cf. Sect. 3.4).

A recent work [13,14] examining the importance of
higher (non-1s) exciton states concluded that, as inter-
mediate states in a ‘renormalized’ Hamiltonian in the 1s
subspace, the higher states are crucial for the polarization
dependence of the third-order optical responses even when
only 1s excitons are excited initially. This conclusion con-

tradicts our findings presented above. In the remainder of
this subsection, we attempt to present a clear discussion of
this issue. In references [13,14] the conclusion is reached in
two steps: (i) first a renormalized exciton-exciton Hamil-
tonian in the 1s subspace is derived, including the effect
of higher exciton states in second-order perturbation the-
ory, (ii) the resulting renormalized Hamiltonian is shown
to give a microscopic foundation to a phenomenological
bosonic Hamiltonian which was used earlier [17] to ex-
plain the polarization dependencies of four-wave-mixing
measurements on a quantum-well microcavity. The quan-
titative estimate in references [13,14] point to important
renormalization contributions to the 1s Hamiltonian from
the non-1s states, and the parameter values are quantita-
tively consistent with those obtained by fitting the exper-
iment in reference [17]. We examine this finding in detail
below.

The 1s Hamiltonian obtained in references [13,14] is
characterized by two constants: U is the magnitude of the
first-order transition matrix element for 1s-to-1s scatter-
ing, and U ′, the renormalizing term, is the magnitude of
the second-order transition matrix element for 1s-to-1s
scattering with non-1s states as intermediate states. U is
equal to the Hartree-Fock matrix element V HF in equa-
tion (30) above. U ′ is given by (Eq. (43) in Ref. [14]):

U ′ =
1
Ω

∑
Kν 6=1s

|gν(K)|2
2(Eν + K2/2M)− 2E1s

(37)

gν(K) =
∑
p,p′

V (p− p′ + K) {−φ∗1s(p)φ∗1s(p
′)φν(p)φν(p′)

+ 2φ∗1s(p)φ∗1s(p−K)φν(p)φν(p′)
−φ∗1s(p)φ∗1s(p

′)φν(p−K)φν(p′ + K)} · (38)

The interaction matrix element between co-polarized ex-
citons is then proportional to (U − U ′)/2, while that be-
tween counter-polarized excitons is proportional to −U ′.
Transition matrix elements to optically inactive states are
also given by combinations of U and U ′. In estimating
the size of U ′, references [13,14] restricted the sum over
intermediate states to 2p and then made an estimate of
the multidimensional momentum integral. The estimate
of U ′ obtained in this way is very close to U , from which
it is concluded that renormalization effects from higher
states are important and that these could lead to a strong
suppression of the effective interaction strength between
co-polarized excitons ((U−U ′)/2) relative to that between
counter-polarized excitons (−U ′). It is further noted that
if these interaction matrix elements are used in a lowest-
order perturbation calculation of the exciton-exciton scat-
tering amplitude in the 1s subspace, the results would fit
the experiment in reference [17]. Since these conclusions
depend on the size of U ′, it is important to check the quan-
titative accuracy of its estimate given in references [13,14].
We have carried out this check by also restricting the in-
termediate states to 2p and straightforwardly evaluating
the six-dimensional momemtum integral numerically. In-
stead of a value comparable to U , we obtain a U ′ which is
only about 2% of the size of U . (We note that our calcu-
lation revealed massive cancellations among the terms in



454 The European Physical Journal B

gν=2p.) Therefore, based on the same considerations used
in [13,14], we found that, when the numerical evaluation
of U ′ is done with a high-precision algorithm, the con-
clusions should be reversed: the non-1s renormalization
term U ′ appears not to be a significant correction to U
for co-polarized excitons, and the interaction matrix ele-
ment for counter-polarized excitons is much weaker than
that for co-polarized excitons. These conclusions on the
importance of higher exciton states are in line with our
other estimates presented above.

Of course, the fact that U ′ is small does not imply that
the third-order nonlinear responses involving counter-
polarized excitons must be weak. Successive rescatterings
within the 1s subspace, i.e. 1s-excitons, including opti-
cally inactive ones with non-zero momenta, must also be
considered. Regarding this point, it is instructive to com-
pare the χ(3) four-wave-mixing susceptibility for counter-
polarized pump excitons as calculated in [13,14] to that
calculated via a second-Born (leading-order) approxima-
tion (setting S to zero) to the 1s scattering amplitude
equation (32):

χ+−(Ref.14) ∼
∑

K,ν=2p

|gν(K)|2
2(Eν −E1s)− ~2K2/M

(39)

χ
+−(Present)
2ndBA (Ω) ∼

1
2

∑
q

|Wxx(+)(q, 0)|2 + |Wxx(−)(q, 0)|2
Ω − ~2q2/M + iγb

· (40)

In (40), the dominant intermediate states are the (1s)
optically inactive states. Our calculations show that
the leading-order 1s rescattering contributions to equa-
tion (40) are three to four orders of magnitude larger than
the renormalizing contributions from the 2p states.

To summarize, our conclusion in this subsection is,
there is no indication so far that the contributions from
non-1s intermediate states are important for χ(3) opti-
cal responses around the fundamental exciton. Instead,
our calculations of the transition matrix elements between
(1s, 1s) and selected higher exciton states support the as-
sumption that the 1s truncation is a valid approximation,
although a convincing proof on this point is still lacking.
This issue can only be satisfactorily resolved when accu-
rate numerical evaluations of the full four-fermion prob-
lem and/or a rigorous theoretical analysis are available.
In the remainder of the paper, we restrict ourselves to the
1s-approximation.

3.2 Evaluation of the Coulomb matrix elements

The appearance of the exciton-exciton interaction in the
inverse propagator is equivalent to a non-perturbative,
infinite-order dependence of the T -matrix on the interac-
tion Wxx(λ)

nm,n′m′(q,q
′) (cf. Fig. 1a). Thus calculation of the

T -matrix requires knowledge of the true two exciton scat-
tering wavefunctions and their eigenenergies. As discussed
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Fig. 3. The direct (a) and exchange (b) exciton-exciton inter-
action matrix element evaluated for q̃′ = 0 (with q̃ = a0q/2).
Here, a0 (Eb) is the exciton Bohr radius (exciton binding
energy).

in the previous section, we believe that the two-exciton
states can be restricted to those involving two 1s-excitons
with arbitrary center-of-mass momentum, and that higher
exciton states can be neglected (under the optical excita-
tion conditions assumed throughout this paper). We have
numerically evaluated T by discretizing and diagonaliz-
ing angle-averaged matrix elements of Hxx(λ)

1s1s,1s1s(q,q
′),

and constructed the resolvent via eigenfunction expansion.
The angle-averaging is a special case of the angular mo-
mentum decomposition presented in Appendix A. Specif-
ically, the angle average of Wλ (q,q′) ≡ Wλ(q, θ; q′θ′) is
given by

W̄λ(q, q′) =
1

2π

∫ 2π

0

dθ′Wλ(q, 0; q′θ′). (41)

Within the 1s-approximation and the assumption of spa-
tially homogeneous and isotropic optical excitation, angle-
averaging of the two-exciton Hamiltonian does not consti-
tute an additional approximation (cf. Appendix A). Our
discretization scheme is briefly discussed in Appendix B.

In our approach to the numerical evaluation of the ex-
citonic T -matrix, it is the computation of the Coulomb
matrix elements which is the most time-consuming part.
Typically, the quantities W c and W xc vary strongly for
small q̃ (where q̃ = a0q/2), while for large q̃ they vary
little. This can be seen from Figure 3, where we show the
potential W c(q̃, 0) and W xc(q̃, 0) for various electron-hole
mass ratios. The results shown in Figure 3 are in agree-
ment with Figures 1 and 2 of reference [41]. While the plots
for W c/xc(q̃, 0) give us an overall feeling for the general
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behaviour of the potential, in our numerical evaluation of
the DCT formalism we need the potential as a function of
q and q′. In our discretization, we take ∆q̃ = 0.2 for the
range 0 < |q̃| < 4, and ∆q̃ = 1.0 for the range 4 < |q̃| < 20.
After the calculation of each matrix element of each block
matrix specified by (q, q′, θ′), we use a 3rd order spline
interpolation so that ∆q̃ = 5 × 10−3. Then we compute
the angle average of block matrices. We show the result-
ing matrices for two mass ratios, me/mh = 0 and 2/3, in
Figures 4 and 5.

For me/mh = 0, the matrices W c and W ex are sym-
metric with respect to the exchange of q and q′. This
reflects the fact that the interaction depends only on
| q− q′ |: the Fourier transform to real space yields a lo-
cal potential depending only on the distance between the
holes. That distance is used as a parameter in the Heitler-
London model. On the other hand, in the matrix elements
for a finite electron-hole mass ratios, e.g. me/mh = 2/3,
the direct part remains local and thus symmetric with re-
spect to the replacement of q and q′, while the exchange
part is both nonlocal and asymmetric. Thus, if one ne-
glects the factor (1−λS)−1 in front of the Coulomb matrix
elements, the resulting two-exciton Hamiltonian in the 1s-
approximation is in general non-hermitian. In principle,
one could therefore expect complex eigenvalues. However,
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Fig. 5. Same as Figure 4, but for me/mh = 2/3 (corresponding
to GaAs).

within our computational accuracy, we have found only
real eigenvalues.

3.3 The role of the excitonic overlap matrix S

The occurrence of the excitonic overlap matrix S in the
two-exciton Hamiltonian, equation (18), presents an addi-
tional complication in two respects. First, it simply adds
another k-integral to the evaluation of the Coulomb ma-
trix elements. If we would not make any further approxi-
mation, such as the 1s-approximation, the S-matrix would
certainly have to be taken into account in order to pre-
serve the correct antisymmetry properties of the biexciton
amplitude. If, however, one makes additional approxima-
tions (in our case it is the 1s-approximation), the resulting
S-matrix is only an approximation to the full S-matrix.
In this case, one has to make sure that the approximation
does not lead to artefacts regarding the S-matrix contri-
butions to the two-exciton Hamiltonian.

The formal issues regarding the occurrence of the
S-matrix in the two-exciton Hamiltonian have been dis-
cussed in Section 2.1. Within the 1s-approximation, we
find that the eigenvector matrix U (see Eq. (24) and the
subsequent discussion) is (to within our numerical accu-
racy) unitary if the factor (1 − λS)−1 in the Coulomb
contribution to the two-exciton Hamiltonian is included.
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Specifically, the sum of the squared off-diagonal matrix el-
ements of U†U is less than 1% of the sum of the diagonal
matrix elements. If we neglect the (1 − λS)−1 contribu-
tion in the two-exciton Hamiltonian, we find that the ma-
trix U is not strictly unitary, which corresponds to the
non-hermiticity of the Coulomb matrix discussed in the
previous subsection. Specifically, the deviation from uni-
tarity in the sense of the above-mentioned contribution of
off-diagonal matrix elements is about 80% (with maximum
about 900%) in the triplet (λ = 1) and 30% in the singlet
(λ = −1) channel. This also means that inclusion of the
(1 − λS)−1 is necessary for the two-exciton Hamiltonian
in the 1s-approximation to be hermitian.

However, when we look into the behavior of (1−λS)−1

in the 1s-approximation, we face the following problem.
We can diagonalize, for example, (1−λS) and take the in-
verse of its eigenvalues. The quantity (1−λS) is almost di-
agonal and the eigenvalues are almost unity. Among them,
however, a few eigenvalues deviate significantly from unity
(for example, we find an eigenvalue of 1.95 for (1+S), and
one of 0.05 for (1−S)). In particular, in the triplet channel
the eigenstate with eigenvalue 1/0.05 leads to a patholog-
ical behavior of (1−S)−1 in the high energy region of the
T -matrix (this will be discussed Fig. 8). Quite generally,
if (1−S)−1 is very large (in the sense just mentioned), ap-
proximations such as the 1s-approximations may not be
trusted. Since, in our case, we can identify the patholog-
ical behavior of (1 − S)−1 with a specific spectral region
in the T -matrix, we argue that in spectral regions not af-
fected by this pathological behavior the 1s-approximation
is valid. In general, any approximation affecting S may
make results obtained from a calculation that includes S
less reliable than results obtained without S. Whether or
not this is indeed the case is often difficult to say.

3.4 The biexciton binding energy

In the singlet channel the eigenstates of the interaction
Hamiltonian (18) contain a state with negative eigen-
value due to the attractive interaction between two exci-
tons with opposite spin configuration (the bound biexciton
state). Numerical results for the biexciton binding energy,
εxx, in units of the exciton Rydberg, Eb, as a function
of the electron-hole mass ratio are presented in Figure 6.
The solid squares show our results for the case without S.
The quantity εxx decreases monotonically as me/mh de-
creases. The solid line corresponds to the results taken
from the literature, namely the variational calculation pre-
sented in reference [42]. Since it represents a variational
calculation, the true value of the biexciton binding energy
should lie above this line. In the region me/mh > 0.4,
our results almost agree with that of reference [42]. We
also compare with the result in the equal-mass limit ob-
tained from a stochastic variational method (SVM), which
may be viewed as the most accurate calculations currently
available [43]. In comparison with this our binding en-
ergy is slightly lower because we restrict ourselves to the
1s-exciton basis. On the other hand, the biexciton bind-
ing energy obtained with S included in the calculation
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Fig. 6. 2D biexciton binding energy in units of the exciton
binding energy as a function of the electron-hole mass ratio
with (diamonds) and without (squares) the contribution of the
exciton overlap matrix S. The solid line shows the correspond-
ing result of Kleinman’s variational calculation (Ref. [42]) and
the cross shows the results from the stochastic variational
method (Ref. [43]).

is smaller than the one without S. Here is an example
where the presence of the matrix (1 + S)−1 in the two-
exciton Hamiltonian amplifies the shortcomings of the 1s-
approximation and a quantitative analysis is better with
S being neglected. However, this does not imply that the
neglect of (1 + S)−1 results in a general improvement of
the theory.

3.5 The off-energy-shell T-matrix

The truncation to the 1s subspace and the inclusion of
exchange interaction result in a non-hermitian W xx(λ),
but we will see that, in spite of this non-hermiticity,
our numerical results can be successfully related and
compared to the concepts of general scattering theory
(e.g. [32]). This theory has recently been applied to the
analysis of an experiment [44,45]. As was discussed in
Section 2.2, the zero-momentum off-energy-shell T -matrix
for two colliding particles behaves asymptotically at low
energies as [33] TLS(z) ≈ − 2π~2

Mr

1
ln[(−z)/εc] , where z is the

(complex) energy in the center-of-mass frame and Mr is
the reduced mass. We re-write equation (35) as

T ij(~Ω + iγb) ≈ −
Aij

ln(−(~Ω − 2ε(0) + iγb)/ε
ij
c )
a0

2Eb.

(42)

where 2ε(0) is the continuum edge, and Eb the 2D ex-
citonic Rydberg energy. If the exciton-exciton matrix is
hermitian, Aij is Aij = 2πα(1− α) (see Eq. (35)), where
α = mh/(me +mh). In the following, we will present the
T -matrix results we obtain from the DCT approach within
the 1s-approximation and compare it with the Popov for-
mula, equation (42). The comparison will be made quan-
titative by way of fitting the parameters in the Popov
formula to our numerical results.

In Figure 7, we show T ij in the asymptotic region
around the continuum edge for a mass ratio of 2/3. When
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Fig. 7. Exciton-exciton (off-energy-shell) forward scattering amplitude at zero momentum in the counter-circularly (a, b) and
co-circularly (c, d) polarization configuration calculated without the contribution of the exciton overlap matrix S. Here ε(0) is
the exciton energy at zero center-of-mass momentum.
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Fig. 8. Same as Figure 7, but for results with (without) S for γb/Eb = 5× 10−2 are shown as solid (dashed) lines. The insets
show the results on a larger energy scale. See the text Section 3.3.

the dephasing constant γb is decreased, our computed T ij
indicate or suggest a non-smooth logarithmic behavior of
equation (42) and that is independent of the inclusion of S
(Fig. 8). Before we explore the similarities to the Popov
formula in more detail, we note that the real part of T++

shows a minimum at ~Ω − 2ε(0) = 0, and the real part of
T+− shows an approximate zero-crossing. This behavior

is related to the sum rule of reference [25]. In particular,
the sum rule for T++ provide an important cancellation
between the mean field exchange and correlation effect.
To see in more detail whether the sum rule is strictly ful-
filled within the 1s-approximation, we have to study the
value of T++(~Ω+iγb) and T+−(~Ω+iγb) for ~Ω = 2ε(0)
in the limit of vanishing γb, as only in this limit one can
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Fig. 9. The zero-energy T-matrices corresponding to Figure 7 for ~Ω = 2ε(0) as a function of the two-exciton dephasing
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show again the full numerical results (solid line) and the numerical results within the 2nd Born approximation (dash-dotted
line).

expect the sum rule to be valid. The solid line in Fig-
ure 9 shows the corresponding result without the contribu-
tion from the exciton overlap matrix S. Clearly, for small
γb/Eb, T++ and T+− decrease with decreasing γb, but
very slowly. In contrast, the results from the 2nd Born
approximation (dash-dotted lines in the insets) show that
in this case the sum rule is not fulfilled at all (see also
Ref. [44]). This is especially true in the case with S (not
shown).

In order to study in more detail the asymptotic behav-
ior of T++ in the limit of vanishing γb, we can fit Popov’s
formula to our full numerical results. If one equates the
real and imaginary part of the right hand side of the Popov
formula to the numerically given T -matrix in the DCT ap-
proach and solves for Aij and εijc , one obtains the values
of the fitting parameters Aij and εijc . If the frequency-
dependence of the numerically given T -matrix differs from
that of the Popov formula, the fitting parameters are no
longer constants, but acquire a frequency dependence. In
our case, however, we find that this frequency dependence
is small as long as one considers only small frequency in-
tervals and as long as one uses sufficiently small damping
constants γb (smaller than a few times 10−3Eb). Figure 9
shows that in the limit of vanishing γb, the fit matches the
numerical results exactly, which means that the asymp-
totic behavior of the numerical results is given by the
1/ln(iγb) behavior of equation (42). This, in turn, allows
us to conclude that the asymptotic value of T++(~Ω+iγb)

for ~Ω = 2ε(0) is zero, and that therefore the above-
mentioned sum rule is indeed fulfilled.

In Figure 10, we show our numerical computed T ij

and the corresponding fit results from the Popov for-
mula in the vicinity of two exciton continuum edge for
a mass ratio of 2/3 and γ̃b = γb/Eb = 3 × 10−3. The
agreement is overall good, even though the biexciton de-
phasing rate is not extremely small, and the energy in-
terval shown is rather large. Apparently, our computed
T ij obeys an approximate 1/ ln behavior within the range
|~Ω − 2ε(0)| < 0.01Eb. One also sees that the T -matrix
for +− yields a better agreement with the Popov formula
than that in the ++ channel.

The results for the fit parameters A+− and A++ with
γ̃b = 10−3 as a function of me/mh is shown in Figure 11.
Without S, A++/2πα(1−α) deviates from 1.0 in the large
me/mh region. This is a result of the interaction Hamilto-
nian being strongly non-hermitian in this case. The value
decreases to 1.0 as me/mh decreases because the interac-
tion Hamiltonian becomes more symmetric (see the dis-
cussion above). On the other hand, the results with S
included is almost 1.0 because S recovers the hermiticity
of the interaction Hamiltonian.

In the +− channel, A+−/2πα(1 − α) is close to 1.0
with and without S. The fact that it is close to 1.0
even without S, where the interaction Hamiltonian is
non-hermitian, is due to a partial cancellation between the
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Fig. 10. Low energy behavior (i.e., small deviations of the frequency argument from the two-exciton continuum edge) of
the exciton-exciton (off-energy-shell) forward scattering amplitude at zero momentum in the counter-circularly (a, b) and co-
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for calculations including (neglecting) the exciton overlap matrix S. The solid (dashed-dotted) lines show results obtained from
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T + and T − contributions (see Sect. 2.2 for the definition
of T+−).

In Figure 12 we show the characteristic energy
scale εijc . These quantities increase monotonically as a
function of electron-hole mass ratio. In other words, on
the scale of the exciton binding energy the Popov formula
is best fulfilled in semiconductors with equal electron and
hole masses. As for the discrepancies one obtains in cal-
culations with and without S, we show in the inset that
scaling of εijc by the biexciton binding energy εxx modifies
these discrepancies significantly (note that the biexciton
binding energy also depends on the mass ratio).

4 Summary

We have presented a numerical analysis of the exciton-
exciton interactions in a semiconductor quantum wells
based on the dynamics-controlled-truncation (DCT)
treatment of the quantum many-electron-hole system.
Truncating the DCT equations to the heavy-hole 1s-
exciton subspace (1s-approximation), we arrived at an ef-
fective exciton-exciton scattering theory, expressing the
χ(3) susceptibility in terms of an off-energy-shell exciton
scattering (or T -) matrix.

We have discussed the validity of the 1s-approximation
by evaluating exciton-exciton interaction matrix elements
with states other than 1s; we have presented details
of the exciton-exciton interaction matrix within the 1s-
approximation, including the dependence on the electron-
hole mass ratio and the issue of non-hermiticity; we have
presented a comparison of the biexciton binding energies
obtained within the 1s-approximation with literature val-
ues; we have studied the frequency dependence of the off-
energy-shell excitonic T -matrix including its dependence
on the exciton wave function overlap matrix S, its agree-
ment (including numerical fits) at low energies with behav-
iors of generic T -matrices in 2-dimensional scattering the-
ory, its dependence on the two-exciton dephasing rate γb
(in particular the asymptotic value at zero-energy in the
limit of vanishing γb).

Overall, we found that the exciton-exciton interaction
matrix elements between 1s and higher states are small.
This may be viewed as the basis for the validity of the
1s approximation, which may also be inferred from the
fact that the obtained biexciton binding energy does not
differ too much from established literature values. A de-
tailed discussion contrasting our findings with publica-
tions which stress the role of higher (non-1s) exciton states
has been given in Section 3.1. We also found that the ex-
citonic T -matrix underlying 3rd-order optical susceptibili-
ties exhibits the low energy asymptotic behavior of generic
2-dimensional two-body scattering amplitudes.

The inclusion of the excitonic wavefunction over-
lap matrix, S, essentially prevents the 1s-approximation
from making the effective two-exciton Hamiltonian non-
hermitian. On the other hand, we have found that, in the
1s approximation, S exhibits some problematic aspects
that have led us to conclude that in quantitative applica-
tions its inclusion does not always improve the results. For

one thing, the biexcitonic binding energy is less accurate in
the calculations with S. The issue of whether to include S
introduces an additional uncertainty that one should bear
in mind when applying our theory in quantitative compar-
isons with experiments. The most reliable information is
obtained in cases where one can draw physical conclusions
whose validity are not too sensitive to this uncertainty. A
nontrivial example of such a case has already been dis-
cussed in reference [44]. In view of the smallness of the
Coulomb coupling between 1s and higher exciton states,
we believe the magnitude and general functional form of
the exact χ(3) four-fermion ‘T -matrix’ around the two 1s-
exciton continuum edge is quite reasonably represented
by the 1s T -matrices (with or without S) presented here.
Moreover, an important characteristic of the exact four
fermion T -matrix, namely its vanishing at zero-frequency
in the limit of vanishing γb [25], was found to be repro-
duced by the excitonic T matrix (independent of the in-
clusion of S). Detailed numerical accuracy can only be
ascertained when the exact fermionic χ(3) DCT theory is
solved to the same level of numerical accuracy.

Our analysis should help to understand the physics
of optical nonlinearities in the excitonic χ(3)-regime on
the basis of standard scattering theory, while clarify-
ing important differences between two-particle scatter-
ing with short-range potentials on the one hand and the
physics of exciton-exciton scattering, which (even in the
1s-approximation) is a four-fermion problem, on the other
hand.

This work is supported by grants from NSF (Division of Ma-
terials Research), JSOP, COEDIP (University of Arizona). We
thank W. Schäfer for sending us part of his book (Ref. [38])
prior to publication and Y.P. Svirko and R. Shimano for use-
ful discussions. One of us (R.T.) dedicates this paper to the
memory of Hajime R. Takayama.

Appendix A: Angular momentum
decomposition the interaction Hamiltonian

In this appendix, we show the details of the angular mo-
mentum decomposition (with the quantization axis nor-
mal to the plane of the quantum well) of the two-exciton
Hamiltonian equation (18). As in the text, exciton-pair
basis states in the center-of-mass frame are labeled by
(s1, j1, n, s2, j2,m,q), where n denotes the set of quantum
numbers specifying the eigenstate of an exciton formed
from an electron in the conduction band s1 and a hole
in the valence band j1, the triplet m, s2, j2 specify the
eigenstate of the other exciton, and q denotes the relative
momentum between the two excitons. We will use polar
coordinates for the momentum: q ≡ (q, θ). We expand the
column vectors and the matrix elements in this basis in
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Fourier series in the angle coordinates:

bs1j1s2j2λnm (q) =
∑
µ

eiµθbs1j1s2j2λµnm (q) (43)

N j1j2
nm,n′m′(q,q

′) =
∑
µµ′

eiµθN j1j2µµ
′

nm,n′m′(q, q
′)e−iµ′θ′ ,

N = W xx(λ) or S. (44)

By the 2D rotational symmetry of our model exciton
Hamiltonian, we can choose the exciton eigenstates to
also be eigenstates of the exciton angular momentum lz:
φjn(k, θk) = f jn(k)eiµnθk where µn is the lz quantum num-
ber of state n and f jn is the radial eigenfunction. Then it
can be shown, again by the rotational invariance of the
unit operator and the Coulomb potential, the Fourier co-
efficients in equation (44) above are decoupled (diagonal-
ized) into blocks labeled by the total angular momentum
of the exciton-pair basis state Lz = µ+ µn + µm:

N j1j2µµ
′

nm,n′m′(q, q
′) = δµ+µn+µm,µ′+µn′+µm′

1
2π

×
∫ 2π

0

dθ′eiµ′θ′N j1j2
nm,n′m′(q, 0, q

′, θ′), (45)

where N = W xx(λ) or S. Since the kinetic energy in equa-
tion (18) obviously has this property, the total (relative +
internal orbital) angular momentum of the exciton pair
Lz is conserved by the (eehh) Hamiltonian, as expected
from general considerations. The identity operator in the
µ-basis is explicitly

Is1s2j1j2µµ
′

nm,n′m′ (q, q′) = δnn′δmm′δµµ′2π
δ(q − q′)

q
· (46)

For spatially uniform exciting fields, it is a good ap-
proximation to assume the two excitons to be created in
a state of zero Lz. If we further assume only the lowest
exciton state 1s is excited, then the initial exciton pair
has relative angular momentum µ = 0. Subsequent scat-
terings will in general couple this initial state to states
with other combinations of (µn, µm, µ) within the block
satisfying µn + µm + µ = 0. But if we further truncate
the equations of motion (or, equivalently, the intermedi-
ate scattering states) to the 1s subspace, then the relative
angular momentum µ is also conserved (= 0). Under these
assumptions, the four-fermion Hamiltonian has been re-
duced to an effectively one-dimensional Hamiltonian, the
nontrivial coordinate being the radial component of the
relative momentum of the two 1s excitons.

Appendix B: Numerical construction
of the exciton-exciton correlation kernel

In the equation of motion of the interband polariza-
tion equation (28), the correlation contribution is con-
trolled by the 1s retarded exciton-exciton correlation

kernel G̃λ(t − t′). In this appendix, we lay out ex-
plicitly the numerical scheme for constructing this ker-
nel via discretization (in the radial momentum coordi-
nate). G̃λ(t − t′) is defined by equation (22) restricted
to the 1s subspace. Its non-trivial ingredient is the 1s-
restriction of equation (20): G̃λ(q,q′, t − t′) ≡ 1

i~θ(t −
t′)
[
e−(i/~)(Hxx(λ)−iγbI)(t−t′)

]
(q,q′), which is the retarded

Green’s function of the Schrödinger equation under the
Hamiltonian Hxx(λ), i.e.,

∑
q′′

[
i~
∂

∂t
δqq′′ −Hxx(λ)(q,q′′) + iγbδqq′′

]
×G̃λ(q′′,q′, t− t′) = δ(t− t′)δqq′ (47)

G̃λ(q,q′, t− t′) = 0, t < t′.

We pass to the continuum limit of this equation, using
the replacements:

∑
q
→ 1

(2π)2

∫
dqqdθ, δqq′ → (2π)2δ(θ −

θ′) δ(q−q
′)

q . We then substitute Hxx(λ) and G̃λ by their dou-
ble Fourier series (cf. Eq. (45)) and obtain the equation
in angular momentum space. As noted above, Hxx(λ) is
block-diagonal in µ, leading to a one-dimensional equa-
tion for the Green’s function of each value of µ. Only the
µ = 0 equation is considered, in which we will also sup-
press the index µ.

To evaluate the Green’s function numerically, we dis-
cretize its equation on a grid in the radial momentum
coordinate: qk = (k − 1)∆q, k = 1, 2, · · ·, N , where ∆q
is the grid size and N the number of grid points. With
δ(qk − qk′) ≈ δkk′

∆q and
∫

dqq ≈
∑
k

∆qqk, the discretized

equation for the 1s, µ = 0 Green’s function takes the form

∑
k′′

[
i~
∂

∂t
δkk′′ −Hxx(λ)

kk′′ + iγbδkk′′
]

×G̃λkk′′(t− t′) = δ(t− t′)δkk′ (48)

G̃λkk′ (t− t′) = 0, t < t′

where the discretized Hamiltonian is given by

H
xx(λ)
kk′ = 2ε(qk)δkk′ +

∑
k′′

(I − λS)−1
kk′′W

xx(λ)
k′′k′ (49)

with the various factors given in terms of the original func-
tions in q-space:

(1− λS)kk′ = δkk′ − λ
∆qqk′

2π

∫ 2π

0

dθ′

2π
S(qk, 0, qk′ , θ′)

(50)

W
xx(λ)
kk′ =

∆qqk′

2π

∫ 2π

0

dθ′

2π
Wxx(λ)(qk, 0, qk′ , θ′). (51)

The Green’s function is constructed by an eigenvector ex-
pansion in this N -dimensional space. Let ε(λ)

j and φ
(λ)j
k ,

j, k = 1, 2, · · ·, N be the eigenvalues and the eigenvectors
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respectively of Hxx(λ)
kk′ . Then the discretized Green’s func-

tion is given by

G̃λkk′′(t− t′) =

1
i~
θ(t− t′)

N∑
j=1

e−
i
~ (ε

(λ)
j −iγb)(t−t′)U

(λ)
kj

[
U (λ)

]−1

jk′
(52)

where the matrix U (λ) is assembled with the eigenvectors:
U

(λ)
kj = φ

(λ)j
k . Performing the same partial wave decom-

position and discretization on the 1s-restriction of equa-
tion (22), we obtain the following expression for the re-
tarded two-exciton propagator:

G̃λ(t− t′) =
1
2

N∑
k,k′,k′′=1

(
∆qqk

2π

)
Wxx(λ)∗

× (qk, 0)G̃λkk′′(t− t′)(I − λS)−1
k′′k′W

xx(λ)(qk′ , 0) (53)

where W xx(λ)(qk, 0) =
∫ 2π

0
dθ
2πW

xx(λ)(qk, θ, 0, 0).
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